IMPORTANT INFORMATION ABOUT YOUR DRINKING WATER
TOTAL COLIFORM RULE
MONITORING REQUIREMENTS NOT MET FOR
Hanover College

Our water system recently violated a drinking water standard. Although this is not an emergency, as our customers, you have a right to know what happened, what you should do, and what we are doing to correct this situation.

We are required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of whether or not our drinking water standards meet EPA’s health standards. During April 2015 we only collected one (1) of the required two (2) samples for Total Coliform and therefore cannot be sure of the quality of our drinking water at that time.

What should I do?

There is nothing you need to do at this time.

What does this mean?

This is not an immediate risk. If it had been, you would have been notified immediately.

What Happened? What is being done? Explain below.

We anticipate resolving the problem within ______ by May 1st, 2015 ______ estimated time frame

For more information, please contact John D. Todd at (812) 866-7061 or 359 E St. George Rd. phone number or mailing address

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

This notice is being sent to you by Hanover College system name
Public Water Supply ID# IN5239010 PWSID # Date Distributed 2/29/2015
CERTIFICATION FORM FOR PUBLIC NOTICE

From the time you issue the notice to the following address:
Send a copy of each type of notice and the enclosed certification form within ten (10) days after issuing the notice:

For Violation: Installation Monitoring

(for public system name)
PWSD # IN529010

Occurring in: April 2015
Date of Violation:

Date of Notice:

Page 2

- Hand delivery
- Posting in conspicuous locations
- Noncommunity systems must use at least one of the following methods:
 - Publishing in newspaper within the area served
 - Mail at a separate notice or included with the bill
 - Hand or direct delivery

You are required to provide the enclosed public notice within 24 hours upon learning of the violation.

The document describes a form for certification of public notices for violations related to installation monitoring. It includes fields for the date of violation, date of notice, and a section for the public notice instructions.
HANOVER COLLEGE
ANNUAL DRINKING WATER QUALITY REPORT

We are pleased to present this year’s Annual Water Quality Report (Consumer Confidence Report) for January 1-
December 31, 2014. It provides details about where your water comes from, what it contains, and how it compares to the
standards set by regulatory agencies. We routinely monitor for constituents mandated by the EPA (Environmental
Protection Agency) and IDEM (Indiana Department of Environmental Management). Our goal is to provide you with a
safe and dependable supply of drinking water.

Contact Information:

Hannover College water is supplied by Kent Water Company who provided these results. The Kent Water Company Board
of Directors meets the fourth Thursday of each month at 7:00 p.m. at their company office located at 6162 West State
Road 256, Madison, IN 47250. Hannover College water is managed by the Hanover College Physical Plant located at 359
E. Lagrange Road, Hanover, IN 47243. Please help us protect our water resources. If you have any questions about your
water quality, please call John Todd at (812) 866-7061, Monday through Friday, from 7:00 a.m. – 4:00 p.m.

Where does your water come from?

Your drinking water comes from two underground well fields located at 3101 South River Bottom Road and at the base of
Hanover Beach Hill, Hanover, IN. A Wellhead Protection Plan and a SOURCE Water Assessment Plan, which integrates
geology and potential source of contamination in the Wellhead Protection Area, have been approved by IDEM and are
available at the Kent Water Company Office.

Why are there contaminants in your drinking water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs,
and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals,
and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human
activity. Contaminants that may be present in source water include:

Microbial contaminants: such as viruses and bacteria, which may come from sewage treatment plants, septic systems,
agricultural livestock operations, and wildlife.

Inorganic contaminants: such as salts and metals, which can be naturally occurring or result from urban storm-water runoff,
industrial or domestic wastewater discharges, oil and gas production, mining or farming.

Pesticides and herbicides: which may come from a variety of sources such as agriculture, urban storm-water runoff, and
residential uses.

Organic chemical contaminants: including synthetic and volatile organic chemicals, which are by-products of industrial
processes and petroleum production, and can also come from gas stations, urban storm-water runoff, and septic systems.

Radioactive contaminants: which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants
in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for
contaminants in bottled water, which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some
contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Do you need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-
compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ
transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk
from infections. These people should seek advice about drinking water from their health care providers or the Safe
Drinking Water Hotline.

Additional health effects you should know about:

Copper is an essential nutrient, but some people who drink water containing Copper in excess of the action level over a
relatively short amount of time could experience gastrointestinal distress. Some people who drink water containing
Copper in excess of the action level over many years can suffer liver or kidney damage.

Elevated levels of Lead can cause serious health problems, especially for pregnant women and young children. Lead in
drinking water is primarily from materials and components associated with service lines and home plumbing. We are
responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing
components. When your water has been sitting for several hours, you can minimize the potential for Lead exposure by
flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.
Drinking water analysis has a language all its own. In this table below, you will find many terms and abbreviations that you might not be familiar with. To help you better understand these terms, we have provided the following definitions:

Parts per million (ppm) or Milligram per liter (mg/l) - one part per million equates to one minute in two years or a single penny in $10,000.

Parts per billion (ppb) or Microgram per liter (ug/l) – one part per billion equates to one minute in 2,000 years, or a single penny in $10,000,000.

Action Level (AL) – the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

AVG (Average)—Regulatory compliance with some MCLs are based on running annual averages of monthly or quarterly samples.

Maximum Contaminant Level Goal – The “Goal” (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level – The “Maximum Allowed” (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA (Not Applicable): Does not apply to this water system.

ND (Not Detected): Laboratory analysis determined the constituent was not present at detection limits.

KENT WATER/HANOVER COLLEGE TEST RESULTS- IN 5239002

<table>
<thead>
<tr>
<th>Disinfectants and Disinfection By-Products</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG or MRDL (Chlorine)</th>
<th>MCL or MRDL (Chlorine)</th>
<th>Units</th>
<th>Violation? Y/N</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haloacetic Acids (HAA5)</td>
<td>2014</td>
<td>3</td>
<td>3.2-3.2</td>
<td>No goal for the total</td>
<td>60</td>
<td>ppm</td>
<td>N</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td>Total Trihalomethanes (THM)</td>
<td>2013</td>
<td>9.8</td>
<td>9.8</td>
<td>NA</td>
<td>80</td>
<td>ppm</td>
<td>N</td>
<td>By-product of drinking water chlorination.</td>
</tr>
<tr>
<td>Chlorine</td>
<td>2014</td>
<td>1</td>
<td>1-1</td>
<td>MRDL=4</td>
<td>MRDL=4</td>
<td>ppm</td>
<td>N</td>
<td>Water additive used to control microbes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inorganic Contaminants</th>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation? Y/N</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>2011</td>
<td>1.2</td>
<td>1.2</td>
<td>0</td>
<td>10</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2014</td>
<td>0.881</td>
<td>0.881-0.881</td>
<td>4</td>
<td>4</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.</td>
</tr>
<tr>
<td>Mercury</td>
<td>2011</td>
<td>0.1</td>
<td>0.1</td>
<td>2</td>
<td>2</td>
<td>ppm</td>
<td>N</td>
<td>Erosion of natural deposits; Discharge from refineries and factories; runoff from landfill; runoff from cropland.</td>
</tr>
<tr>
<td>Nitrate (measured as Nitrogen)</td>
<td>2014</td>
<td>2</td>
<td>1.77-1.77</td>
<td>10</td>
<td>10</td>
<td>ppm</td>
<td>N</td>
<td>Runoff from fertilizer use; Leaching from septic tanks; sewage; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Sodium</td>
<td>2011</td>
<td>19.54</td>
<td>19.54</td>
<td>NA</td>
<td>NA</td>
<td>ppm</td>
<td>N</td>
<td>Naturally occurring.</td>
</tr>
</tbody>
</table>

Radioactive Contaminants

<table>
<thead>
<tr>
<th>Collection Date</th>
<th>Highest Level Detected</th>
<th>Range of Levels Detected</th>
<th>MCLG</th>
<th>MCL</th>
<th>Units</th>
<th>Violation? Y/N</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta/Photon Emitters</td>
<td>2009</td>
<td>0.7</td>
<td>0.7</td>
<td>0</td>
<td>4 pCi/L</td>
<td>N</td>
<td>Decay of natural and man-made deposits</td>
</tr>
</tbody>
</table>

How can you get involved?

Your involvement starts with the environment around you. Surface water and groundwater are continually being impacted by your actions. The most effective way to prevent groundwater contamination is through education about potential contamination sources and how to minimize or eliminate them completely.