From the Pyramids and the Roman aqueducts to the steam engine, the spaceship, and the smart phone, engineering is how we have been applying science to create structures and machines and transform the world around us. Engineering at Hanover offers you a rigorous and broad education, emphasizing both analysis and practical skills. You will learn in small classes, engage with supportive faculty members who are committed to your success, conduct research and present your results, gain work experience with our industry partners and have the opportunity to study abroad.

Learning engineering at Hanover College

Our mission:

We offer an excellent grounding in the ideas, skills, and experience of engineering within a liberal arts environment, so that students can succeed in their profession, function across disciplines, provide leadership, and make positive contributions to society.

We emphasize critical thinking and creative problem solving that foster innovation. We challenge our students to collaborate, communicate effectively, complete research projects, and receive career training before graduation.

We cultivate love for lifelong learning as an essential means to thrive in a world of constant change. We encourage students to pursue further studies or careers with confidence and insight, a broad perspective, and a profound appreciation for what makes us human.

Our strengths:

  • You learn in small, dynamic classes one-on-one with experts who unlock your potential and develop your professional skills.
  • You can join a research or work internship (or co-op), and receive academic credit.
  • You expand your horizons through visits and guest lectures by our industry partners.
  • You enjoy the benefit of the integration of engineering with science and the liberal arts. In addition, you may combine engineering with business through our established Business Scholars Program (BSP). There is an increasing US and global demand for broadly educated engineers.
  • You have the opportunity to study abroad.

Degree Paths

The Engineering Department offers Bachelor of Science (B.S.) degrees in six engineering disciplines and a Bachelor of Arts (B.A.) degree in engineering science:

  • mechanical engineering
  • electrical engineering
  • electromechanical engineering
  • computer engineering
  • general engineering
  • engineering physics
  • engineering science

The engineering curriculum is designed for those who wish to pursue career paths in engineering or applied science through research, teaching, industry, or entrepreneurial engineering. It prepares students for advanced studies as well as professional employment.

The engineering science curriculum attracts students who wish to benefit from multidisciplinary studies, tailored around a compact engineering core, so that they effectively pursue careers in engineering management, consulting, public service, business, or entrepreneurship.

Engineering degree requirements and example schedules

Beyond the classroom (research, internships, co-ops)

Professors have an active research agenda and engage students with projects. You will have the opportunity to present your research on campus and in professional conferences.

You can earn academic credit for a summer internship or a more extensive co-op. In particular, Hanover College corporate partners offer a unique opportunity to qualified engineering majors to acquire work and research experience through a four-month co-op. This extends over a spring term and the subsequent summer, and so students can complete it and still graduate in four years. Because of a strong local business representation, students have the option to avoid relocation.

Experiential opportunities also include spring-term travel, field trips, and study abroad opportunities.

The engineering department can also offer paid employment to majors as tutors or lab assistants.


Certain engineering (ENGR) courses below, which are not designated as "lecture and laboratory," can still include lab, computational, or design components.

ENGR 101
Exploring Engineering
For students who are intrigued by engineering and technology or who are considering a career in this broad field. Professors and industry experts team up to guide students through the engineering experience. Students work in groups to construct a prototype solution to an engineering problem, gain an understanding of the fundamentals of engineering thinking and design process, and learn how to communicate outcomes. Includes tours to manufacturing facilities and discussion of issues of ethical and professional responsibility. Knowledge of algebra and trigonometry is essential. Does not count toward Engineering or Engineering Science majors. .5 unit.
ENGR 207
Materials Science I
Introduction to the structure, properties, processing, and performance of engineering materials: waves, principles of quantum mechanics, hydrogen atom, periodic table, bonds and molecules, structures of metals and ceramics. Prerequisites: Mat 122, Phy 185. .5 unit.
ENGR 208
Materials Science II
Introduction to the structure, properties, and performance of engineering materials: polymers, imperfections, diffusion, phases, electrical, mechanical, magnetic, thermal, and optical properties, corrosion, applications and processing of engineering materials. Prerequisites: 207 or Phy 225. .5 unit.
ENGR 250
Electrical Circuit Analysis
Resistive elements and networks, solutions in the time domain and the frequency domain, independent and dependent sources. Prerequisites: Mat 122, Phy 185. Recommended: CS 220.
ENGR 290
Intro. to Engineering and Design
Core engineering themes and principles; engineering computing and visualization; designing and constructing solutions based on analytical and computational models, experimental performance tests, probability & statistics, assessing errors, refining models and designs. Laboratories emphasize project-based experience using MATLAB and computer-aided design (CAD) software. Lecture and laboratory. Prerequisites: 250, CS 220. Strongly recommended: Phy 245. Lab fee.
ENGR 302
Mechanical Engineering Tools
Introduction to the fundamentals of machine tool and computer tool use and fabrication techniques. Students work with a variety of tools including the bandsaw, milling machine, and lathe. Instruction is given on MATLAB and CAD and assignments are project-oriented. Prerequisite: 290. .5 unit.
ENGR 305
Electronic Circuits and Design
Switches and MOS and MOSFET transistors, digital abstraction, filters, amplifiers, energy storage elements, analog and digital circuits and applications. Prerequisites: 250, CS 220. .5 unit.
ENGR 311
Linear Systems and Signals
Engineering phenomena that may be represented by linear, lumpedparameter models are studied. Linear systems in the mechanical, thermal, fluid, and electromechanical domains. Laplace Transforms, Fourier analysis, and Eigenvalue methods. Both transfer function and state-space representations of systems are studied. Continuous-time and discrete-time forms of signals and systems. Lecture and laboratory. Prerequisites: 290, Phy 245. Lab fee.
ENGR 316
Digital Systems
Boolean algebra, digital number systems and computer arithmetic, combinational logic design and simplification, sequential logic design, timing analysis, and optimization, register-transfer design of digital systems, clocks and synchronization, finite state machines, FPGAs. Computer-aided digital design software and hardware implementation laboratories. Lecture and laboratory. Prerequisites: 250, CS 220. Lab fee.
ENGR 318
Semiconductor Electronics I
Electrical conduction, semiconductor materials and devices, diodes, transistors, FETs, LEDs. Prerequisites: 250, Phy 245.
ENGR 321
Instrumentation and Statistics
Instrumentation, measurement, computer-aided experimentation, methods of statistical and error analysis, random processes, quality control. Lecture and laboratory. Prerequisite: 250, CS 220. Lab fee.
ENGR 324
VLSI Design
An introduction to the design, analysis, and modeling of digital integrated circuits, with an emphasis on hands-on chip design using CAD tools. Lecture and laboratory. Prerequisites: 305, 316. Lab fee.
ENGR 325
Embedded Microcomputer Systems
Analysis and design of embedded systems. Microcontrollers, realtime control, construction of complete systems. Software and development tools, programmable system on chip, peripheral components such as A/D converters, communication schemes, signal processing techniques, closedloopdigital feedback control, interface and power electronics, and modeling of electromechanical systems. Lecture and laboratory. Prerequisites: 305, 316. Strongly recommended: 311. Lab fee.
ENGR 326
Computer Systems Architecture
Physical and logical design of a computer. Microprocessors, CPU design, RISC and CISC, pipelining, superscalar processing, caching, virtual memory, assembly and machine language, multiprocessors. Lecture and laboratory. Prerequisites: 305, 316, CS 234. Lab fee.
ENGR 328
Mobile Robotics
Design, construction, and testing of field robotic systems that act intelligently in dynamic, unpredictable environments. Team projects focus on electronics, instrumentation, machine elements, and programming. Lectures on ethics in engineering practice included. Lecture and laboratory. Prerequisites: 311,Phy 331. Recommended: 316, 330 (or CS 223), 347. Lab fee.
ENGR 330
Numerical Simulation
Introduction to computational techniques for the simulation of a variety of engineering and physical systems. Numerical methods including interpolation, least squares, and statistical regression, integration, solution of linear and nonlinear equations, differential equations, finite element methods. Deterministic and probabilistic approaches. Assignments require programming in Python or MATLAB. Prerequisites: CS 220, Phy 185, Phy 245.
ENGR 334
Mechanics of Materials
Statics, fundamentals of continuum mechanics, mechanics of deformable bodies, and structural mechanics. Stress, strain, linear elasticity with thermal expansion, bending, deflection, torsion, failure modes. Application to simple engineering structures such as rods, shafts, beams, and trusses. Prerequisites: Phy 245, Phy 331.
ENGR 336
Fluid Dynamics
Fundamentals of continuum mechanics, constitutive relations for fluids, Newtonian and inviscid fluids, viscous laminar flow and turbulence, incompressible and compressible flows, supersonic flow, boundary layer theory. Fluid systems modeling and engineering applications. Lecture and laboratory. Prerequisites: Phy 245, Phy 320. Lab fee.
ENGR 337
Thermofluids Engineering I
Integrated development and application of the principles of fluid mechanics, thermodynamics, and heat transfer to the design and analysis of engineering systems: Entropy generation, conduction heat transfer in solids, heat transfer, finned surfaces, fluid models, hydrostatics, hydraulics, inviscid flow analysis and Bernoulli equation, internal and external laminar viscous flows, boundary layers, turbulence, head loss in pipes. Prerequisites: 311, 336.
ENGR 342
Signal Processing
Sampling theory, signal representation, quantization noise, transformation and manipulation of digital signals, digital filter structure and design, fast Fourier transform, parametric signal modeling, stochastic processes, spectra, Wiener filtering, detection, matched filters, applications (audio, radar, image, or autonomous vehicle). Prerequisites: 311, 321.
ENGR 347
Control Theory and Design
Root locus, frequency response, state space techniques, actuators and sensors, digital control techniques, analysis of A/D and D/A converters, digital controllers, numerical control algorithms, feedback control, stability, programmable-logic based control systems, application in modern manufacturing systems. Lecture and laboratory. Prerequisite: 311. Lab fee.
ENGR 350
Engineering Design & Manufacturing
Creative design process by application of physical laws. Project completion on schedule and within budget. Robustness and manufacturability. Mechanism design and fabrication, machine elements, manufacturing process. Process physics, automation/control, quality, industrial management,systems design and operation. Includes design-and-build project. Lecture and laboratory. Prerequisites: 207, 302, 311. Strongly recommended: 330, 334. Lab fee.
ENGR 352
Engineering Electromagnetics
Electromagnetic waves, radiation and diffraction, coupling to media and structures, waveguides, resonance, circuits, wireless and optical ommunications, computer interconnects and peripherals, microwave communications and radar, antennas, sensors, micro-electromechanical systems, acoustics, power generation and transmission. Prerequisites: 250, Phy 245, Phy 332.
ENGR 355
Semiconductor Electronics II
Advanced semiconductor materials and devices, solid-state circuits, frequency responses and stability, feedback circuits, noise; self-sustained oscillators, phase-locked loops. Photonics and optoelectronics including amplifiers, lasers, photodetectors, image sensors, solar cells, polarization and modulation of light. Prerequisites: 207 (or Phy 225), 305, 311, 318, 352.
ENGR 414
Mechanics of Materials II
Mechanical behavior of engineering materials and structures and the use of materials in mechanical design. Analysis, design and computational techniques for curved beams, spinning disks, thick-walled cylinders, asymmetric beams, torsion, and buckling. Elasticity, plasticity, limit analysis, fatigue,fracture and creep. Energy and finite element methods. Materials selection. Lecture and laboratory. Prerequisites: 330, 334. Lab fee.
ENGR 418
Communication Systems
Fast Fourier transform algorithms, discrete time transfer functions, filter design techniques, architecture and programming of digital signal processors, communication electronics, theory and design principles of analog and digital communication systems, optical and wireless communications. Lecture and laboratory. Prerequisites: 305, 311, 316, 352. Lab fee.
ENGR 421
Thermofluids Engineering II
Integrated development and application of the principles of fluid mechanics, thermodynamics, and heat transfer to the design and analysis of engineering systems: Laminar and turbulent flow, two-phase flow, heat transfer in various scenarios, heat exchangers, turbomachines, simulation of thermofluid systems, design and analysis of thermodynamic plants, power cycles and refrigeration plants. Lecture and laboratory. Prerequisite: 337. Lab fee.